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major fields in acoustics. Sonic crystals (SCs) are defined 
as structured materials formed by a periodic distributions 
of acoustic scatterers embedded in a host material, with 
strong periodic modulations in their density and elastic 
coefficients between the constituent materials. The perio-
dicity of the scatterers in a surrounding material gives rise 
to the appearance of sonic band gaps, a range of frequen-
cies for which sound propagation is forbidden inside the 
crystal. These stop bands were observed at frequencies 
depending on the lattice constant of the array in the band 
structures of crystals with various lattice geometries [3–5]. 
The SCs have induced several application proposals and 
enabled development of many new technologies. Recent 
studies in this field have attracted a great interest due to the 
splendid application prospects, such as acoustic filters [6, 
7], shield devices [8–10], defect states for acoustic filters 
and wave guides [11], and so on. Recently, an increased 
attenuation at low frequencies has been achieved by the 
locally resonant sonic materials formed by soft and rigid 
elements [12]. Several theoretical methods have been used 
to study the elastic/acoustic band structures, such as, the 
plane-wave expansion (PWE) method [13, 14], the finite 
difference time domain (FDTD) method [15], the extended 
plane wave expansion (EPWE) method [16, 17], the mul-
tiple scattering theory (MST) [18], perturbative approach 
[19], and variational method [20]. Among them, the PWE 
is the most widely used method for calculating the band 
structures. In the literature, acoustic band gaps of various 
two-dimensional sonic crystal structures were investigated 
and these structures mostly consist of circular cross-sec-
tion scatterers in square, triangular, rectangular lattices, 
the constituent being either both solids or fluids, or mixed 
solid–fluid [21]. Practically, band gaps properties of sonic 
crystal structures or the acoustic dispersion of the branches 
can be controlled by the lattice filling factor, the constituent 

Abstract The propagation of acoustic waves in two-
dimensional sonic crystals (SC) is studied theoretically. 
Effects of elliptical rod orientations on the acoustic band 
gaps in periodic arrays of rigid solid rods embedded in a 
polar liquid are investigated. We have found that the pass 
bands and forbidden bands of the sonic crystals can be 
changed by utilizing the rotational anisotropy of the struc-
ture factor at different rotation angles of the scatterers. The 
plane wave expansion (PWE) method is used to calculate 
the band structure. The variation of the absolute band gap 
was also investigated as a function of any filling fraction at 
a fixed orientation of the elliptical columns. The gap-tuning 
effect can be controlled by the rotational asymmetry and 
eccentricity of the scatterers.

1 Introduction

The propagation of acoustic waves in a composite medium 
has been an interesting topic for the last decade mainly 
due to its technological applications in condensed matter 
physics, especially in phononics [1, 2]. Since their inven-
tion, phononic crystals have triggered considerable inter-
est because of their unusual acoustical properties. The 
unique properties of phononic crystals open up new and 
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material contrast between the rods and the surrounding, and 
the lattice symmetry, and as well as the scatter shape [22]. 
However, there are fewer studies that consider the shape of 
the inclusions despite the fact that shape factor is an impor-
tant quantity for the propagation of acoustic waves in 2D 
phononic crystals [23–25]. Moreover, most of the work in 
this field focuses on the calculations of the band structure 
of 2D phononic crystals of circular rods.

In the present paper, the propagation of audible acous-
tic waves in two-dimensional periodic arrays of elliptic 
rigid solid rods embedded in polar liquids is considered. 
We have investigated the effects of orientations of ellip-
tic rods on the acoustic band gaps. As a choice of mate-
rial, we have considered polar liquids and perovskite-type 
materials. The speed of sound and the conductivity in most 
polar liquids increases with temperature [26]. On the other 
hand, the perovskite-type materials have been the subject 
of ongoing research for over 50 years.  ABO3-type perovs-
kite crystals are used extensively for technological applica-
tions. In this study, we have chosen water as a polar liquid 
and a well-known classic ferroelectric  BaTiO3.  BaTiO3 is 
a promising material that has a wide range of applications 
in dielectric capacitors, pyroelectric detectors, nonlinear 
optical devices, phononic crystals, and surface-acoustic 
wave devices [27–31]. There are several reasons why 
 BaTiO3 has been chosen as a material of interest.  BaTiO3 
is insoluble in alkalis and water, and durable material. 
It also shows captivating features with temperature. The 
material exhibits interesting self-assembly properties by 
changing its structure at different temperatures from below 
about −70 to above 120 °C. For example, while  BaTiO3 is 
paraelectric with a cubic structure at temperatures higher 
than 120 °C, It forms a stable tetragonal structure at room 
temperature. Below 0 °C it has a stable orthorhombic struc-
ture. Therefore, it may be interesting to see how the band 
structure is affected in the transition from one stable struc-
ture to another. However, although  BaTiO3 is probably the 
most extensively studied material, surprisingly, there are 
not much data available on elastic properties of  BaTiO3. 
Hence, the growing interest in phononic crystals requires 
new materials and material properties.

2  Theory

In this study, we consider a two-dimensional periodic 
composite that composed of solid elliptic rods immersed 
in polar liquids. Since mixed fluid/solid model can be 
simplified by imposing elastic rigidity to the solid media, 
the solid can be reasonably approximated as fluid inclu-
sions. Then, the model allows only the longitudinal wave 

to propagate through the fluid media. Therefore, the 
acoustic wave equation in a sonic crystal can be written 
as a second order inhomogeneous differential equation in 
the form of pressure waves:

where p is the pressure, 
(
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l
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constant C11, and ρ is the mass density, and ∇(x, y) is the 
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sional system as [33]
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3  Results and discussion

The model discussed here is shown in Fig. 1. Elliptical col-
umns in water were arranged in a square lattice. In general, 
the band gap properties of phononic or sonic crystals are 
controlled by the lattice type, geometry, material density, 
speed of sound, and the filling ratio. In this study, we fix the 
material parameters for the elliptic rods in the sonic crys-
tal and rotate the rods in the polar liquid media to extract 
the dependence of the sonic properties.  BaTiO3 is chosen 
as the material for the elliptical inclusions. The mass den-
sity and sound speeds of  BaTiO3 and polar liquid (water) 
are as follows: ρ = 5550 kg/m3, cl = 5640 m/s, for  BaTiO3; 
ρ = 1000 kg/m3, cl = 1500 m/s for water, respectively. The 
lattice constant of the sonic crystal is ao = 13 mm, and the 
long axis of elliptic rods rx = 0.3ao mm and the short axis 
is ry  =  0.5ao mm. Numerical calculations based on these 
equations were performed by the code written by Elford 
[34] after some modifications.

Figure 2 shows the band structure for  BatiO3 columns in 
water for the constant filling fraction angles.

For a square lattice with a lattice constant of ao, the fill-
ing fraction f is given by f = rx ry π/Ac, where Ac is the area 
of the unit cell. The results shown in Fig.  2 are for con-
stant filling fraction of  BaTiO3 = 0.32 for two different rota-
tion angles of (a) θ = −45°, and (b) θ = 45°. From Fig. 2a, 
it is seen that the absolute sonic band gap does not exist at 
θ =−45°. The non-existent bands at θ = −45° start to open 
up at a positive angle of 45°. Therefore, it can be concluded 
that the gaps only appear at certain angles. This is simply 
due to rotational anisotropy of the structure factor at these 
angles.

When a band-gap has been found for a sonic crystal, 
the acoustic sound waves can be confined in a waveguide. 
In such systems, it is convenient and usually customary 
to express the absolute band gap widths in dimension-
less units to make the gap scale independent of crystal 
size. The size of the photonic band gap can be character-
ized by expressing the quantity in terms of the mid-gap 
to band gap ratio. This ratio is defined as ∆ω/ωg [35], 
where ∆ω is the frequency width of the gap and ωg is the 

frequency at the middle of the gap. In this way, the ratio 
becomes more meaningful compared to the gap width, 
∆ω, itself. if the system is scaled up or down, the ratio 
remains invariant to size scaling.

The variation of the band gap is investigated based on 
the rotational asymmetry of the elliptic cylinders. The 
band gap structure can be controlled by rotating the ellip-
tic  BaTiO3 rods which modifies the geometric factor of a 
sonic crystal. Therefore, rotation of the rods will cause 
a geometric anisotropy on the sonic wave propagation 
through the structure. Figure  3 shows the results of the 
calculation for the normalized width of the lowest band 
gap as a function of the rotation angle θ. The filling frac-
tion for the calculation is fixed at approximately 0.47. It 

Fig. 1  a Transverse cross-
section of the 2D square lattice 
consisting of elliptical  BaTiO3 
rods embedded in a polar liquid, 
b rotated rods by an angle θ, c 
and the related first Brillouin 
zone (BZ) of the 2D square 
lattice

Fig. 2  Band structure for elliptical rods in polar liquid water at filling 
fraction f = 0.32 at a θ = −45°, b θ = 45°. The absolute gaps are indi-
cated by the shaded area
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must be noted that the largest value of the first band gap 
was found to be almost equal at θ= 0° and θ= 90°.

To see the variation of the normalized gap-width ∆ω/ωg 
as a function of the filling factor f, the long axis of the 
elliptic rod is kept constant, and then the eccentricity is var-
ied by changing the short axis. Figure 4 shows the ∆ω/ωg 
variation of the lowest three bands as a function of different 
filling fractions. The length of the major axis ry is fixed at 
0.5ao while the minor axis increment is set to 0.5ao in Δrx.

The highest symmetry was obtained from setting rx and 
ry to r = 0.5ao yielding the largest normalized band width. 
Obviously, the shape of the rods becomes circular and the 
circle has the highest symmetry of all.

4  Equi‑frequency surface

Reflection and refraction of a certain wave can be analyzed 
in the space of wave numbers by considering the equi-fre-
quency surface of the wave (EFS). This surface is described 

by the dispersion relation of the anisotropic medium at the 
fixed frequency ω. Therefore, the velocity of the propagat-
ing wave in an anisotropic medium can be obtained by the 
group velocity v⃗g = ∇k𝜔(k⃗). It is easy to imagine that a 
propagating wave in an isotropic medium with a given fre-
quency ωo forms a spherical equi-frequency surface, which 
implies that the wave vector and group velocity vector are 
always in the same direction. However, equi-frequency sur-
face is not always spherical. If the surface normal is not 
parallel to the wave vector, then the wave vector and the 
group velocity vector vg will be in different directions. The 
equi-frequency dependence inherits a physical meaning for 
the analysis of 2D geometries. The equi-frequency depend-
ence simply describes all the possible waves with the given 
frequency ω and various wave vectors, the directions of 
the reflected and the refracted rays can be determined by 
simply finding the points in equi-frequency dependences 
of media that satisfy the momentum conservation law at 
a known orientation of the boundary and a given angle of 
incidence of the wave. Here, we present some numerical 
examples, which are significant for our PC structures.

The EFS shown in Fig.  5a of the suggested phononic 
crystal structure is obtained by calculating all the possible 
eigen frequencies over the irreducible BZ of the entire BZ. 
The possible solutions that are all allowed wave vectors in 
the first BZ forms a point on the surface. The plot is very 
informative, however, it is not easy to analyze. Figure  5b 
shows contours of dispersion surfaces with values on the 
contours given. The equi-frequency contours (EFC) are 
not only easier to visualize all the possible wave vectors 
but also supplementary in analyzing behaviors of phononic 
crystals. The contours in the plot fundamentally represent 
the contours of the energy flow which may allow identifica-
tion of refractive index irregularities. The circular contours 
in the central region of the plot in Fig. 5b imply that energy 
propagation has a directional symmetry. However, the EFC 
inevitably deviates from being circular and loses its shape 
as the contour evolves as a function of frequency. The cir-
cular contours are distorted and become a rectangular-like 
contour by leading to a simple symmetry for values of kx 
equal to ky.

5  Conclusions

In this article, the acoustic wave propagation of a square 
lattice sonic crystal is studied. A sonic crystal made of 
elliptic cross-section of  BaTiO3 rods in a polar liquid 
(water) was considered to investigate the existence of com-
plete band gaps. The largest normalized gap-width Δω/
ωg of the lowest band gap as the function of the rotation 
angle was found to be the same at two different angles, 
θ = 0° and θ = 90°. The existence of tunable band gaps in 
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the frequency regime are found. The appearance and dis-
appearance of the band gaps imply rotational anisotropy 
for angles of ±45°. The influence of filling fraction on the 
sonic eigenfrequencies was also taken into consideration. 
The study showed that when the fill factor reaches its maxi-
mum, the band gap widths were enlarged by opening up in 
the direction of lower and higher frequencies. Sonic crystal 
thus offers an alternative way towards the control and arbi-
trary manipulation of the sound waves. The findings may 
be useful for some of the applications of sonic crystal in 
acoustic devices, such as frequency filter, acoustic wave-
guides, metamaterials.
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