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It is experimentally demonstrated that the combination of diode and splitter functions can be

realized in one broadband reciprocal device. The suggested performance is based on the dielectric

photonic crystal grating whose structural symmetry is broken owing to non-deep corrugations

placed at one of the two interfaces. The study has been performed at a normally incident beam-type

illumination obtained from a microwave horn antenna. The two unidirectionally transmitted,

deflected beams can show large magnitude and high contrast, while the angular distance between

their maxima is 90� and larger. The dual-band unidirectional splitting is possible when using TM

and TE polarizations. VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4800147]

During the last years, there has been a growing interest

in asymmetric transmission, a phenomenon which manifests

itself in the strong contrast between the forward and the

backward transmission in the structures that contain only lin-

ear isotropic constituents and, thus, are reciprocal in sense of

the Lorentz reciprocity principle.1–5 It can appear in struc-

tures with the broken structural symmetry. The strong redis-

tribution of the transmitted wave energy is managed either in

favor of the higher diffraction orders, as in photonic crystal

(PC) gratings,1–3 or the cross polarization, as in structures

based on subwavelength resonators.6,7 Asymmetric transmis-

sion can be used to emulate the diode function simultane-

ously with another, e.g., bending function in one device.1,3

Clearly, the classical (nonreciprocal) diode function cannot

be extracted from the resulting mechanism.

Finite-thickness PC based transmission gratings that

are structurally asymmetric due to the one-side corrugations

have been recently suggested8 and then extensively studied

with the focus on asymmetric transmission.1–4,9–11 In these

structures, the dominant mechanism is based on the merg-

ing of the effects of dispersion of the Floquet-Bloch (FB)

modes of the PC and asymmetric diffraction and coupling

at the interfaces. The higher orders may take all the

incident-wave energy in the forward case, while the trans-

mission is blocked in the backward case.3 Two basic broad-

band regimes, i.e., unidirectional single-beam deflection

(angle of incidence h 6¼ 0) and unidirectional two-beam

splitting (h ¼ 0), have been distinguished.1,3 Achieving a

reasonable compromise between the efficiency and band-

width remains as a big problem, especially at a realistic

beam-type illumination. One more class of the asymmetric

structures presents stacks of prisms based on finite-size

pieces of PCs.5,12–14 A PC grating with deep corrugations

can be considered as a structure that consists of such prisms

which are periodically placed at the top of the noncorru-

gated slab of PC.1,2,4,10 Yet, the simplest one-side corruga-

tions that are obtained by removing every second rod from

an interface layer of the noncorrugated slab of PC can be

most advantageous.3

In this paper, we experimentally demonstrate that the

broadband unidirectional splitting can be obtained in a PC

grating at beam-type illumination created by the microwave

horn antenna. The width and magnitude of the outgoing

beams and the angular distance between them can be con-

trolled by variations in frequency and/or angle of incidence.

In contrast to the earlier works, both TM and TE polarizations

will be studied, for which either electric field vector or mag-

netic field vector is parallel to the rods, respectively. The

considered regimes of asymmetric transmission will include

those whose features cannot be predicted by using wave vec-

tor diagrams. The PC grating has been designed based on the

compromise between the bandwidth and efficiency. Following

our recent experience, we utilize non-deep one-side corruga-

tions which are obtained by removing some rods from one of

the two interface layers of a noncorrugated slab of PC. The

used PC grating is similar to those in Ref. 3 but has a more

suitable value of the rod-diameter-to-lattice-constant ratio,

d=a. Note that another combined regime, i.e., single-beam

unidirectional deflection (bending), has been experimentally

studied in Ref. 2. Throughout the paper, ! denotes the

forward-transmission case (corrugated-side illumination, or

U-case) and  denotes the backward-transmission case

(noncorrugated-side illumination, or L-case).

According to Refs. 1 and 3, the unidirectional splitting

is a wideband operation regime realizable at h ¼ 0 and

the linearly polarized plane incident waves, for which T!

¼ T!R ¼
P
ðnÞ t!�n þ t!þn and T ¼ T R � 0, where T! and

T mean the forward and backward transmittances, respec-

tively. In turn, t!þn and t!�n mean the 6nth-order forward par-

tial transmittances. This regime requires such shapes of

isofrequency dispersion contours (IFCs) of FB modes that

there is no coupling to the waves which may propagate in

the surrounding air half-spaces in the vicinity of zero tangen-

tial wave number kx [x axis is assumed to be along the inter-

faces, as in Fig. 1(a)]; see Ref. 1. Thus, zero order must be

uncoupled in the vicinity of h ¼ 0. However, the coupling

can be possible at the corrugated-side illumination in a cer-

tain range of jkxj 6¼ 0 for the higher diffraction orders, which
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may propagate due to the corrugations but cannot appear at

the noncorrugated interface. Hence, the IFCs must be cen-

tered around M point, while those around X or/and C point

are not appropriate. The situation can be obtained that the

higher orders contribute to T!, but there is no coupling at all

if the noncorrugated side is illuminated, so that T ¼ 0.

Note that the FB modes showing IFCs located around M

point are well known from the spatial filtering15 and negative

refraction16 studies.

For the purposes of the experimental study, we designed

a PC grating that is based on a square-lattice, two-dimen-

sional, dielectric PC, which is composed of circular alumina

rods with a relative permittivity e ¼ 9:61 and diameter

d ¼ 3:1 mm. The lattice constant is a ¼ 10:33 mm, so that

d=a ¼ 0:3. The PC grating is assembled as an 12� 100

array. Extensive simulations have been carried out in order

to determine the optimum design parameters, which would

enable a reasonable compromise between the transmission

efficiency and bandwidth. The corrugations are obtained by

removing every second rod from one of the two interface

layers of a noncorrugated slab of PC. The schematics of the

PC grating and experimental setup are shown in Fig. 1(a).

The setup contains an Anritsu two-port 37369A Network

Analyzer and two standard pyramidal K-band horn antennas.

In the experiment, the incidence distance is Ri ¼ 25 cm,

which corresponds to an approximate spot size of 12a at

f ¼ 22 GHz. The receiver antenna scans a semicircular tra-

jectory of radius Ro ¼ 1 m so that observation angle u is var-

ied. In U-case, layer A (nonregular layer that plays the role

of corrugation) is placed on the transmitter antenna side,

while layer B (regular, i.e., noncorrugated interface layer) is

at the exit side, as depicted in Fig. 1(a). In L-case, layer A is

located at the exit side.

The design has been based on the analysis of IFCs for

the corresponding infinite PC. An example is presented in

Fig. 1(b) for TM-polarization. The kL-values in Fig. 1(b) are

taken from the range, where unidirectional splitting is

expected to appear. To provide connection with the general

theory of the PC gratings,1 we also calculated the transmit-

tance at plane-wave illumination (see Fig. 2(a)). Now, the

structure is assumed to be infinite along the x axis. In the cor-

responding L-case, transmission vanishes in the ranges

labeled by “1” and “2.” The first range of the unidirectional

splitting (denoted by “1”) is wider. It shows 17.9% band-

width. The second one (denoted by “2”) is characterized by a

higher transmittance. It follows from the obtained results

(not shown here) that the locations of these ranges can be

strongly affected by variations in d/a. Simulations have also

been performed at a Gaussian beam-type illumination [see
FIG. 1. (a) Schematic of the experimental setup; the U-case is depicted; for

the L-case, layers A and B are replaced with each other. (b) The IFCs of PC

at the third band, TM polarization: blue lines and triangles––kL ¼ 8:08

(18.67 GHz), light green lines and filled circles––kL ¼ 8:28 (19.14 GHz),

red lines and rectangles––kL ¼ 8:79 (20.3 GHz); the dashed arrows––

possible directions of the group velocity (vg); the input interface is assumed

to be parallel to the black dashed line; solid green circle––the IFC for air at

kL ¼ 8:08; vertical dashed pink, green, and brown lines––the þ1st, 0th, and

�1st order construction lines, respectively; solid green arrow––the incident

wave vector (k0), solid pink and brown arrows––directions of the phase

velocities of the outgoing beams (vp), and solid purple arrows––direction of

the group velocity inside the PC, all at kL ¼ 8:08.

FIG. 2. Transmittance (TM polarization) as a function of kL at (a) plane-

wave illumination: solid dark blue line––t0, dashed red line––t!61, dotted

cyan line––T!; gray rectangles labeled as “1” and “2”––first and second

ranges of unidirectional splitting; (b) Gaussian illumination: dotted cyan

line––T!, solid dark blue line––T ; the shaded regions in gray rectangles

show the vanishing unidirectionality.
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Fig. 2(b)]. The obtained results indicate that not all of the

features can be predicted by the IFC and plane-wave

transmission analyses. It is depicted that the first range of

unidirectional splitting is shrunk and the upper edge is down-

shifted to lower frequencies as the arrow in Fig. 2(b) implies,

while the second range is lost.

The experimental results for the electric field intensity at

TM-polarization, s!R and s R , are presented in Figs. 3(a) and

3(b) on (u,f)-plane. This way of the presentation allows us to

directly observe the evolution of the directional (the differ-

ence between the forward and the backward transmissions)

and directive (the outgoing beam width) features with the

frequency variation. The structure is normally illuminated

with a horn antenna, as shown in Fig. 1(a). Thus, the incident

wave has a wide plane-wave angular spectrum. In Fig. 3,

four typical frequency ranges can be distinguished, depend-

ing on the manner in which the asymmetric transmission

manifests itself. They are denoted by A, B, C, and D. The

asymmetry is strongest for range A, which extends approxi-

mately from 18 GHz to 21.1 GHz. It is associated with the

unidirectional range which is labeled by “1” in Fig. 2. Here,

the backward transmission tends to vanish in the entire range

of u variation. Hence, the diode-like unidirectional splitting

similar to that predicted at h ¼ 0 for the plane-wave illumi-

nation in Refs. 1 and 3 is obtained now for the beam-type

incident wave. The unidirectional transmission co-exists

here with splitting, while both of the outgoing beams are

deflected wrt the incidence direction. The bigger part of this

range possesses topologically the same IFCs as those in

Fig. 1(b). The vicinity of f ¼ 19 GHz looks most preferable,

because the electric field in the exit half-space is quite

strong, while the separation between the outgoing beams in

units of u is quite large.

Range B in Fig. 3 approximately corresponds to 21:1 GHz

� f � 21:8 GHz. Therein, the transmission associated with

zero order is possible in the vicinity of u ¼ 90�. In contrast to

range A, now the backward transmission does not vanish in

the entire range of u variation, so that the exactly diode-like

operation regime cannot be obtained.

According to Fig. 2(a) (kL-range labeled by “2”) and the

dispersion results (not shown), one might expect that zero

order is not coupled and, thus, unidirectional splitting also

appears in range C (21:8 GHz � f � 24:5 GHz). Indeed, as

seen in Figs. 3(a) and 3(b), the zero order relevant transmis-

sion vanishes. However, the unidirectional transmission is

partial in range C, i.e., it occurs within a finite but not the

entire range of u variation. In particular, transmission is non-

zero only in U-case at 30� < u < 60� and 120� < u < 150�.
Strong backward transmission within narrow u ranges is

observed in the horn antenna experiment [Fig. 3(b)], despite

that such a situation does not appear at plane-wave illumina-

tion. The nature of this effect is not the focus of this study.

Finally, in range D (24:5 GHz � f � 26 GHz) the transmis-

sion associated with zero order again becomes significant.

Here, asymmetry remains since s!R 6¼ s R but s!R 6¼ 0 and

s R 6¼ 0, while s R ¼ 0 is required for the diode-like opera-

tion. To compare, the simulation results obtained under a

Gaussian beam illumination are presented in Figs. 3(c) and

3(d). Most of the features of the transmitted electric field dis-

tributions agree very well with the experimental findings.

Figure 4 shows the measured electric field intensity vs u
in U and L cases. The presented results are sampled from

Figs. 3(a) and 3(b). The intensity values can be obtained at

the maxima, for which max s!�1 þmax s!þ1 > max sinc, where

s!�1, s!þ1, and sinc mean the intensity of the outgoing beams

that are associated with the �1st and þ1st diffraction orders

and intensity of the incident beam, respectively. The diffrac-

tion angles, /61, measured in the counter-clockwise direc-

tion wrt the normal to the exit side, are given by the grating

formula, sin /n ¼ sin hþ 2pn=kL, in which we take n ¼ 61,

FIG. 3. Maps of the measured transmit-

ted electric field intensity for (a) U-case

and (b) L-case, and the calculated inten-

sity at the Gaussian-beam illumination

for (c) U-case and (d) L-case; TM polar-

ization; white dashed lines show the ap-

proximate boundaries between ranges A,

B, C, and D; white dotted lines show

u ¼ ug ¼ p=2þ /61 obtained using the

grating formula.
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L ¼ 2a, and h ¼ 0. They are equal to 651� and 636:2�

at kL ¼ 8:08 and 10:46, respectively, corresponding to the

following pairs of the values of u ¼ ug ¼ p=2þ /61:

(141�,39�) and (126.2�,53.8�). To compare, the maxima are

observed in Fig. 4 (U-case) for the following values of

u ¼ um: (137.6�,40.3�) and (126.7�,52.5�). The difference

between ug and um can be connected with the effect of

plane-wave components of the beam angular spectrum,

which correspond to h 6¼ 0 and are coupled to the FB wave

at normal incidence of a finite beam. Additionally, the fabri-

cation imperfections play a role.

Besides, Fig. 4(b) illustrates some peculiarities of the u
dependence of the electric field intensity in range C. Here,

one-way transmission with s!R 6¼ 0 and s R � 0 and the

maxima at u ¼ 52:4� and u ¼ 127:4� are observed. At the

same time, the inverse regime, i.e., that with s!R � 0 and

s R 6¼ 0 (Ref. 3) is obtained while the maxima of s R are

located at u ¼ 37:5� and u ¼ 142�. Their locations have not

been predicted by using the grating formula with L ¼ 2a.

Hence, in contrast to range A, not all among the main

features of range C can be predicted by utilizing the plane-

wave analysis. The different angular locations of the

maxima in U and L cases might be connected with the sub-

stantially different contributions of different angular compo-

nents, while the strength of coupling can strongly depend on

the illumination side.

The unidirectional splitting similar to that demonstrated

in Figs. 3 and 4(a) can also be obtained for TE-polarized

waves. Figure 5 presents the measured electric field intensity

in the frequency range, where s!R is nonzero in a wide range

of u variation, while s R � 0. Due to the symmetry wrt to

u ¼ 90� line, only a half of the entire graph is presented.

Comparing Figs. 3 and 5, one can see that the dual-band uni-

directional splitting can be obtained. One of the two bands

corresponds to TM-polarization, being identical to range A

in Fig. 3. The second one corresponds to TE-polarization,

being located at 21:4 GHz � f � 22:9 GHz. At a proper pa-

rameter adjustment, another regime can be realized, in which

s!R ¼ s!�1 þ s!þ1 6¼ 0 and s R � 0 for both TM and TE polar-

ization in the same frequency range.

To summarize, the possibility of combining diode and

splitter functions in one PC based diode-like reciprocal de-

vice, which is connected to the regime of the broadband

unidirectional splitting, has been theoretically predicted

and verified in the microwave experiment. This regime

appears due to merging the effects of the dispersion of FB

modes and strongly asymmetric diffractions and coupling.

A bandwidth larger than 15% can be realized, while the

intensities of each of the two forward-transmitted narrow

beams exceed the half of that of the incident beam gener-

ated by a horn antenna. At the same time, backward trans-

mission can vanish in the entire range of the observation

angle variation. Utilizing both TM and TE polarizations

enables such a dual-band operation regime. In another

broadband splitting regime, a strong forward transmission

and a vanishing backward transmission occur in a finite but

not entire range of the observation angle variation. The

results obtained at the microwave frequencies indicate a

route to similar performances and operation regimes at

acoustic, terahertz, and optical frequencies.
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