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Abstract
We present a detailed theoretical and experimental study of the evanescent
coupled optical microcavity modes in one-dimensional photonic bandgap
structures. The coupled-cavity samples are fabricated by depositing
alternating hydrogenated amorphous silicon nitride and silicon oxide layers.
Splitting of the eigenmodes and formation of a defect band due to
interaction between the neighbouring localized cavity modes are
experimentally observed. Corresponding field patterns and the transmission
spectra are obtained by using transfer matrix method (TMM) simulations. A
theoretical model based on the classical wave analogue of the tight-binding
(TB) picture is developed and applied to these structures. Experimental
results are in good agreement with the predictions of the TB approximation
and the TMM simulations.

Keywords: Photonic bandgap, microcavity, localization, tight-binding
approximation

1. Introduction

In recent years, there has been much interest in the
physics and applications of one-dimensional spatially
periodic, quasiperiodic and random photonic bandgap (PBG)
structures [1, 2]. Localization of light in disordered and
quasiperiodic photonic systems has been widely studied [3,4].
Superluminal tunnelling through one-dimensional PBG
materials has also inspired great interest [5–7]. Properties
of metallo-dielectric one-dimensional PBG structures have
been investigated [8–11]. By using one-dimensional
PBG structures, many interesting applications have been
reported, such as second-harmonic generation [12], pulse
compression [13], optical limiting and switching [14,15],
filters [16, 17], and photonic band edge lasers [18].
Moreover, the modification of spontaneous emission from
atoms placed in one-dimensional PBG structures has
been demonstrated [19–22].

By introducing a defect into the PBG structures, it is
possible to obtain highly localized cavity modes inside the

1 To whom correspondence should be addressed.

photonic stop band, which is analogous to the impurity states
inside the semiconductor bandgap [23]. Since high-quality
cavities have a crucial role in most of the photonic-crystal-
based applications, it is very important to investigate the
properties of cavities in these structures. In recent years,
coupled microcavities (CMCs) have been investigated [24],
and used in various applications [22,25,26]. These structures
consist of two or more planar Fabry–Perot microcavities which
are coupled to each other.

In the present work, we give a detailed experimental and
theoretical analysis of the CMCs in one-dimensional photonic
crystals. These structures are composed of amorphous silicon
nitride and silicon oxide multilayers with coupled Fabry–Perot
microcavities. This paper is organized as follows: in section 2,
wefirst develop theclassicalwaveanalogueof the tight binding
(TB) approximation in photonic crystals. Then we derive
expressions for the eigenmode splitting, dispersion relation
and group velocity corresponding to the coupled microcavity
structures. The measured resonant frequencies of the coupled
microcavity modes will be compared with the transfer matrix
method (TMM) simulations and the TB results in section 3.
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Figure 1. Schematic drawing of a coupled optical microcavity
structure. A highly localized cavity mode interacts weakly with the
neighbouring cavity modes, and therefore the electromagnetic
waves propagate through coupled cavities.

2. Tight-binding description of localized modes in
photonic crystals

Similarity between the Schrödinger equation and Maxwell’s
equations allows us to use many important tools which were
originally developed for electronic systems. For example, it is
well known that the TB method has proven to be very useful
to study the electronic properties of solids [27]. Recently, the
classical wave analogue of the TB picture [28] has successfully
been applied to photonic structures [29–34]. By using direct
implications of theTBpicture, a novel propagationmechanism
for photons along localized coupled cavity modes in photonic
crystals was proposed [30, 33] and demonstrated [34, 35]. In
these structures, photons can hop from onetightly confined
mode to the neighbouring one due to theweak interaction
between them (figure 1). We experimentally observed the
mode splitting [34], waveguiding [35], heavy photons [36],
andEM-beamsplitting [37] in coupled-cavity systems in three-
dimensional photonic crystals at microwave frequencies. In
addition, we reported the strong enhancement of spontaneous
emission throughout the cavity band of the one-dimensional
coupled optical microcavity structures [22].

In this section, by using the TB approach [33, 34], we
first obtain eigenvalues and eigenvectors corresponding to
two and three CMCs (figure 1 shows the schematics of a
one-dimensional coupled microcavity structure). Then, the
expressions for dispersion relation and group velocity are
derived. We first consider an individual localized modeE�(r)

of a single cavity that satisfies a simplified version of the
Maxwell equations

∇ × [∇ × E�(r)] = ε0(r)(�/c)2E�(r), (1)

whereε0(r) is the dielectric constant of the single cavity and
� is the frequency corresponding to the cavity mode. Here it is
assumed thatE�(r) is real, nondegenerate and orthonormal;
i.e.,

∫
dr ε0(r)E�(r) · E�(r) = 1.

In the case of two weakly interacting coupled cavities,
we can write the corresponding eigenmode as a superposition
of the individual evanescent cavity modes asEω(r) =
AE�(r)+BE�(r−�x̂). The eigenmodeEω(r) also satisfies
equation (1)whereε0(r) is replacedwith thedielectric constant
of the coupled systemε(r) = ε(r −�x̂), and� replaced with
eigenfrequencyω of the coupled cavity mode. InsertingEω(r)

into equation (1), and multiplying both sides from the left first

by E�(r) and then byE�(r − �x̂) and spatially integrating
the resulting equations, we obtain the following eigenmodes
and eigenfrequencies:

Eω1,2(r) = E�(r) ± E�(r − �x̂)√
2

, (2)

ω1,2 = �

√
(1± β)

(1± α)
, (3)

where the TB parameters are given byα = ∫
dr ε(r)E�(r) ·

E�(r − �x̂) andβ = ∫
dr ε0(r − �x̂)E�(r) · E�(r − �x̂).

Similarly, the eigenmodes of three coupled cavities can be
obtained as

E�2(r) = E�(r) − E�(r − 2�x̂)√
2

, (4)

E�1,3(r) = E�(r) ± √
2E�(r − �x̂) + E�(r − 2�x̂)

2
.

(5)
The corresponding eigenvalues are given by

�2 = �,

�1,3 = �

√
1± √

2β

1± √
2α

.

(6)

To derive equations (4)–(6), we ignore the second-nearest-
neighbour coupling between the cavity modes. When we
consider an array of cavities in which each cavity interacts
weakly with neighbouring cavities, the eigenmode can be
written as a superposition of the individual cavity modes

E(r) = E0

∑
n

e−ink�E�(r − n�x̂), (7)

where the summation overn includes all the cavities. The
dispersion relation for this structure can be obtained from
equations (1) and (7) keeping only the nearest-neighbour
coupling terms

ω(k) = �[1 + κ cos(k�)]. (8)

Hereκ = β −α is a TB parameter which can be obtained from
the splitting of the eigenmodes of two coupled cavities. After
finding�, ω1 andω2 from measurements or simulations, one
can determineβ andα by using equation (3).

Thegroupvelocityof photonsalong the localizedcoupled-
cavity modes is given by

vg(k) = ∇kωk = −κ�� sin(k�). (9)

Notice that all physical quantities including dispersion relation
and group velocity depend on only a single TB parameterκ,
and this parameter canbe controlled by changing theproperties
of cavities and the intercavity distance.

3. Coupled optical microcavities: experiment versus
theory

Five different samples are used to investigate the coupled
optical microcavity structures. The first sample is a 15-pair
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Figure 2. Measured (solid curves) and calculated (dotted curves)
transmission spectra for (a) a DBR and (b) single-cavity,
(c) two-coupled-cavity and (d) three-coupled-cavity structures. Due
to coupling between the strongly localized microcavity modes, the
single-cavity mode splits into two or three distinct modes depending
on the number of coupled cavities. There is a good agreement
between the measured and the calculated transmission spectra.

distributed Bragg reflector (DBR). The other samples contain
one, two, three and seven cavities, respectively. Each pair in
thesestructuresconsistsofλ0/4 thickalternatingsiliconnitride
(Si3N4) and silicon oxide (SiO2) layers. The corresponding
thicknesses and refractive indices are determined by using a
Radolph AutoEL III ellipsometer asdSiO2 = 97.0 nm,dSi3N4 =
70.3 nm andnSiO2 = 1.48, nSi3N4 = 2.10. The cavity layers
are silicon oxide with 194 nm (λ0/2) thickness, and� = 2.5
pairs intercavity distance. These samples are grown on silicon
and glass substrates by using the plasma-enhanced chemical
vapour deposition (PECVD) technique at 250◦C. Nitrogen-
(N2-) balanced 2% silane (SiH4), pure ammonia (NH3) and
nitrous oxide (N2O) are used as the silicon, nitride and oxide
sources, respectively. The transmission measurements are
performed by using an Ocean Optics S2000 fibre spectrometer.
Theminimumvalueof themeasured transmission, 0.1%, is due
to the sensitivity of our experimental set-up. We also obtained
the transmission characteristics and the field patterns of these
fabricated structures by using the TMM [38].

The measured transmission spectrum of the DBR exhibits
a forbidden gap extending from 515.3 to 654.2 nm. The
simulation result agrees well with the measurement, and shows
a stop band extending from 517.5 to 663.3 nm (figure 2(a)). In
the presence of a single cavity, a highly localized cavity mode
is observed within the PBG. The measured cavity wavelength
appears atλ0 = 580.4 nm (�0 = c/λ0 = 516.9 THz), with
a quality factor, defined as�λ/λ, of Q = 128. As shown
in figure 2(b), the TMM results in a resonant wavelength at
580.5 nm withQ = 707. The corresponding field pattern at
the resonance wavelengthλ = λ0 for normal incidence is also
calculated. Figure 3(a) shows the field intensity as function of
positionx (deposition direction). The localized cavity field,

b

c
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Figure 3. Calculated field patterns of a single cavity and two
coupled cavities as a function of the position. (a) The field intensity
corresponding to the single cavity forλ = λ0 displays an oscillatory
behaviour, and most of the field accumulates within the cavity
region. (b), (c) The field intensities of two coupled cavities for
resonant wavelengths (b) λ = 560.6 and (c) λ = 601.6. For both
symmetric and antisymmetric cases, the field intensities exhibit
peaks at the cavity regions.

|E�(r)|2, exhibits an oscillatory behaviour, and most of the
field is concentrated around the cavity region.

For two coupled cavities, the transmission characteristics
as a function of wavelength are measured and calculated.
As shown in figure 2(c), we observe that the resonance
mode is split into two distinct symmetric and antisymmetric
modes. The measured values of the resonance wavelengths are
599.3 nm (ω1 = 500.6 THz) and 561.1 nm (ω2 = 534.7 THz),
which are very close to the calculated results, i.e. 601.6 and
560.6 nm. At this point, we can determine the TB parameters,
α andβ, by inserting measured or calculated values ofω1 and
ω2 into equation (3). This procedure leads to a TB parameter
κ = −0.066whenweuseexperimentally determined values of
ω1 andω2. Similarly, the corresponding resonant frequencies
obtained by the TMM simulations lead toκ = −0.07, which
is very close to the experimentally obtained value.

Thecalculated field patterns corresponding to thesemodes
are plotted in figures 3(b) and (c). It is observed that although
both field patterns show two peaks around the cavity regions
they also exhibit different properties between the cavities.
The field intensity corresponding to the lower-frequency mode
(antisymmetric) has a node between the cavities. This result is
along our expectations, as the localized photon modes should
overlap when two isolated cavities are brought together. Due
to this interaction, the doubly degenerate eigenmode splits into
two distinct modes as we described in the previous section (see
equation (2)) [39]. Thesemodesare reminiscent of thebonding
and antibonding states in solid state physics. For example,
in the diatomic molecules, the interaction between the two
atoms produces a splitting of the degenerate atomic levels into
bonding and antibonding orbitals [40]. Recently, the splitting
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Figure 4. Calculated field patterns of three coupled cavities for the
resonant wavelengths (a) λ = λ1, (b) λ = λ2 and (c) λ = λ3. These
modes can be constructed by the superposition of the individual
cavity mode which is localized at each cavity site.

of photon modes has also been observed in photonic molecules
which were fabricated by coupling pairs of micrometre-sized
semiconductor cavities [41].

When we brought three cavities together, the single-
cavity mode�0 split into three different eigenmodes. In this
case, the corresponding transmission spectra are measured
and calculated. As shown in figure 2(d), there is good
agreement between measured and calculated transmission
characteristics of the three coupled cavities. Figure 4 exhibits
corresponding field patterns of three coupled cavities. The first
and third modes, figures 4(a) and (c), are linear combinations
of three individual localized cavity modes with appropriate
coefficients, which are given in equation (5). The second
mode, figure 4(b), is obtained by combining only the first and
third cavity modes, which corresponds to equation (4). As
shown in figure 4, there is a exact correspondence between the
calculated field patterns by using the TMM and predictions of
the TB analysis.

Wealso compare themeasuredand the calculated resonant
wavelengths of three CMCs with the TB approximation
results, which are determined by inserting the parameters
α and β (these parameters can be obtained from either
measured or calculated values ofω1 and ω2 by using
equation (3)) into the equation (6). Table 1 gives a comparison
between the measured and calculated resonance wavelengths
of three coupled cavities with the TB predictions. These
parameters can be determined from the experiments and TMM
simulations. The measured and calculated (by using the TMM
code) values of the resonance frequencies coincide well with
the TB approximation’s predictions. This excellent agreement
shows that the classical wave analogue of TB formalism is a
useful tool to investigate PBG structures.

When more cavities are brought together, due to coupling
between localized cavity modes, we expect that a cavity band
is formed within the PBG. Figure 5(a) displays the measured

Table 1. Comparison of the resonant wavelengths of three coupled
cavities obtained by measurements, the TMM simulations and the
TB approximation. The measured results are in excellent agreement
with the TMM simulation results, and the prediction of the TB
approximation.

Measurement TMM TBa TBb

λ1 (nm) 551.8 551.4 552.7 553.1
λ2 (nm) 580.7 580.4 580.5 580.4
λ3 (nm) 612.1 612.4 610.6 607.0

a Simulated results are used to determineα andβ by
using equation (3).
b Experimental results are used to determineα andβ
by using equation (3).

(a)

(b)

(c)

Figure 5. (a) Measured (circles) and calculated (solid curve)
transmission through a coupled microcavity (CMC) structure which
contains seven coupled cavities. A cavity band is formed between
530 and 659 nm. Nearly 100% transmission is observed throughout
the cavity band. (b), (c) Calculated field patterns corresponding to
two different wavelengths within the cavity band, namely
(b) λ = 628.3 nm and (c) λ = 567.0 nm. The extended nature of
these modes can be achieved by linear combination of localized
cavity modes, where each of them is confined around the cavity
region.

and simulated transmission spectra of CMC structures which
contain seven cavities. The cavity band extends from 540 to
626 nm. Nearly 100% transmission is achieved throughout
the cavity band. The calculated transmission spectra agree
well with our measurements. It is important to note that
since the cavity band edges are very sharp compared to
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Figure 6. (a) Calculated dispersion relation of the CMC structure
by using equation (8) withκ = −0.07. (b) The group velocity is
plotted according to equation (9) as a function of wavevectork. The
group velocity is one order of magnitude smaller than the speed of
light at the band centre (k� = π/2), and vanishes at the band edges
(k� = 0 andπ ).

the PBG edges, one can use this sharpness to construct
photonic switches [15,35]. Recently, Bayeret al [42] reported
formationof aphotonic banddue to couplingbetweenphotonic
molecules. The corresponding field intensity profiles for two
different wavelengths within the cavity band are calculated.
As shown in figures 5(b) and (c), the field intensity profiles
look like extended modes which have nonzero values along
the cavity sites.

We can obtain the dispersion relation of the CMC
structure after finding the TB parameters from measurements
or simulations. Figure 6(a) shows the calculated dispersion
relation ω(k) as a function of wavevectork by using
equation (8) withκ = −0.07. We also plotted the normalized
group velocity (equation (9)) corresponding to the CMC. As
shown in figure6(b), thegroupvelocity has itsmaximumvalue,
nearly one-tenth of the speed of light, at the coupled-cavity
band centre, and vanishes at the band edges. The coupled-
microcavity structures can efficiently be used in certain
applications such as dispersion compensators and photonic
switches. Moreover, the spontaneous emission rate and the
efficiency of nonlinear processes can be enhanced in coupled-
microcavity systems due to very low group velocity.

4. Conclusions

In summary, the transmission properties of the coupled-
microcavity structures in one-dimensional PBG materials
have been investigated. The structures are fabricated by
using hydrogenated amorphous silicon nitride and silicon
oxide multilayers. The splitting of eigenmodes due to
interaction between the localized electromagnetic cavity
modes is observed. The TB parameters are extracted from
measurements and the TMM simulation results.
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